Calculation Guidance							
	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
	Use quantities and objects to add two single digit numbers and count on to find the answer One more Begin to use appropriate vocabulary	Regrouping to make 10 using 10 frames. Starting at the bigger number and counting on using concrete materials Combining two parts to make a whole: part whole model Represent and use number bonds to 20 .	Combine two numbers Use known facts Adding 3 single digits Adding set of 10 . Bar Model Add a 2-digit number and ones, two 2-digit numbers. 3 1-digit numbers	Add numbers mentally up to three digits Add numbers with up to three digit using a formal column method Column addition without regrouping. Column addition with regrouping. Use inverse operations to check answers	Add numbers with up to four digits using formal methods Estimate and use inverse to check calculations Solving addition twostep problems in context. Column addition regrouping.	Add whole numbers with more than four digits using formal methods Add numbers mentally with increasingly large numbers Use of place value counters for adding decimals. Column addition regrouping.	Using knowledge of the order of operations to carry out calculations involving all four operations Use of place value counters for adding decimals Abstract methods Column addition regrouping.
	Use quantities and objects to subtract two single digit numbers and count back to find the answer One less Taking away ones Begin to use appropriate vocabulary	Subtract one and two digit numbers to 20 using 10 frames Starting at the bigger number and counting back using concrete materials Taking away ones Find the difference Part part whole Make 10 Bar Model	Subtract two numbers Regroup a ten into ten ones. Partition to subtract without regrouping. Make 10.	Subtract numbers mentally up to three digits Subtract numbers with up to three digit using a formal column method. Column subtraction without regrouping. Column subtraction with regrouping. Use inverse operations to check answers	Subtract numbers with up to four digits using formal methods Estimate and use inverse to check calculations Column subtraction include regrouping.	Subtract whole numbers with more than four digits using formal methods Subtract numbers mentally with increasingly large numbers Column subtraction include regrouping.	Using knowledge of the order of operations to carry out calculations involving all four operations Column subtraction include regrouping.

Objective \& Strategy	Concrete	Pictorial	Abstract
Use quantities and objects to add two single digit numbers and count on to find the answer.	'Four toys and I add three toys... how many altogether'	Draw a representation of each number and group together	Starting to form number sentences
One more.	$9+1$ 'Nine toys and one more makes 10 '	Draw a representation of each number and group together	odd 1 more $=$

The introduction and use of appropriate vocabulary is important at this stage.

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model.	Use part part whole model (left) Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 14+6=20 \\ & 5+14=20 \\ & 20=14+6 \\ & 20=6+14 \end{aligned}$
Starting at the bigger number and counting on.	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	Start with the bigger number and use the smaller number to make 10 . Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20.	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7 .' ' 8 is 3 more than 5 .'

Y2 ADDITION

Objective \& Strategy	Concrete	Pictorial	Abstract								
Adding multiples of ten.	Using dienes, Base 10 , bead strings or equivalent to model units of 10 addition	2tens+4tens $=$ \qquad	$\begin{aligned} & 20+40=60 \\ & 70=50+20 \\ & 40 \quad \square+=90 \end{aligned}$								
Use known number facts. Part part whole.	Children explore ways of making numbers within 20 with apparatus.	 Numbers split into Tens (part) and Ones (part) with pictures to make the whole number.	$\begin{aligned} & 20-\square=\square \\ & \square+\square=2 \end{aligned}$								
Using known facts.		Children draw representations of tens and ones $\begin{aligned} & \because+\because=\therefore \\ &\\|+\\| \\|=\\| \\|\\| \\| \\ & \square \square+\\|_{\square}=\text { 日a } \\ & \square \square \square \square \end{aligned}$	$\begin{gathered} 4+5=9 \\ \text { Leads to } 40+50=90 \\ \text { Leads to } 400+500=900 \end{gathered}$								
Bar model.	$3+4=7$	$7+3=10$	23 5 $?$$23+25=48$								
Add the following: a 2-digit number and ones.	$16+5=21$ Children explore the pattern. $\begin{aligned} & 16+6=21 \\ & 26+6=31 \end{aligned}$	Add the ones: $4+5=9$ Add4he tens to the ones: $10+9=19$ Use part whole model and number line to model.	Explore related facts. $\begin{aligned} & 16+5=21 \\ & 5+17=21 \\ & 21-5=16 \\ & 21-16=5 \end{aligned}$								

Add a 2-digit number
and tens.

Y3 ADDITION

Objective \& Strategy	Concrete	Pictorial	Abstract
Column Additionno regrouping. (friendly numbers) Add two or three 2 or 3-digit numbers.	Add together the ones first then the tens.	Children move to drawing the counters using a tens and one frame.	
Column addition with regrouping.	Exchange ten ones for a ten. Model using apparatus (e.g. numicon and counters)	Children can draw a representation of the grid, to support understanding, carrying the ten.	
Mental methods should include increasingly large numbers, fractions and decimals. Modelling, including bars and number lines can support these methods.			

Y4 ADDITION

[^0]

Objective \& Strategy	Concrete
subtract two single digit	
numbers and count back to	
find the answer.	

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. (See early years subtraction) $4-2=2$	$15-3=12$ Children cross out the objects to show what has been taken away.	$4-2=3$ $15-3=12$
Counting back.	Move objects away from the group, counting backwards.		Put 12 in your head and count back 3. What number are you on? Jack has 15 pencils he gives 5 away. How many does he have left over?
Find the difference.	Compare objects and amounts. 8 3 five more than three.	Count on using a number line to find the difference. Begin to encourage children to use an empty number line to support abstract concepts.	Lucy has 12 sweets and her sister has 5 . How many more does Lucy have than her sister?
Represent and use number bonds and related subtraction facts within 20. Part Part Whole Model.			Move to using numbers within the part whole model.

	If ten is the whole and 6 is one of the parts, what is the other part?			
Make 10.	Make 14 on the 10 frame. Take 4 away to make 10, take one more so you have taken 5 . $14-5=9$		 16-8. How many do we take off first to get to 10 ? How many left to take off?	
Bar Model.	I have 12 apples and I eat 3. How many would I have left? 000000 000888		8 $\begin{aligned} & 10=8-2 \\ & 10=2-8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$	2

Y2 SUBTRACTION

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtract two numbers.	$8-5=$ \square	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is Children to explore why 9-6 = 8-5 = 74 have the same difference. $8-5=3$
Regroup a ten into ten ones.		$20-4=$	$20-4=$
Partition to subtract without re-grouping.	34-13 = 21 Use dienes to show how to partition the number when subtracting without re-grouping.	Children draw representations of Deines and cross off.	$43-21=22$
Make 10 strategy. Progression could be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead or bar bead strings to model counting to next ten and the rest.	Use a number line to count on to the next ten and then the rest.	$93-76=17$

Y4 SUBTRACTION

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Subtract whole
 numbers with more
 than four digits using
 formal methods. | | Children may still use pictorial representations to support
 understanding. | |

Year 5 and 6 Subtraction.

	EYFS	Y1	Y2	Y3	Y4	Y5	Y6
Mutipication	Recognise and make equal groups Doubling in a practical way.	Counting in multiples using concrete materials. Solve one step word problems using arrays and other concrete materials.	Show that multiplication can be done in any order (commutative) Solve problems using arrays and other concrete materials.	Write and calculate mathematical statements for multiplication using the times tables they know. Multiply 2 digit by 1 digit numbers using base 10 progressing to formal written methods.	Multiply two digits and three digit numbers by a onedigit number using a written formal method. Solve multiplication two-step problems in context choosing appropriate operations	Identify multiples and factors, including all factor pairs of a number. Multiply numbers up to 4 digits by a one or two-digit number using a formal written method including long multiplication for two digit numbers. Multiply numbers (including decimals) by 100, 100 and 1000.	Multiply multi-digit numbers up to 4 digits by a twodigit whole number using the formal written method of long multiplication. Identify common multiples.
통	Halving and sharing in a practical way. Division as grouping	Solve one step word problems using arrays and other concrete materials.	Show that with division the biggest number has to go first. Solve problems using arrays and other concrete materials.	Write and calculate mathematical statements for division using the times tables they know. Divide 2 digit by 1 digit numbers using base 10 or other concrete materials. Division with a remainder using concrete objects and number facts.	Divide numbers up to 3 digits by a onedigit number using the formal written method. Division with a remainder.	Divide numbers up to 4 digits by a onedigit number using the formal written method. Interpret remainders appropriately for the context. Divide numbers (including decimals) by 100, 100 and 1000 .	Use short division to divide a 4-digit number by a 2 -digit number. Use long division to divide a 4-digit number by a 2 -digit number. Solve multi step problems involving division.

EYFS Multiplication

Objective \& Strategy	Concrete	Pictorial	Abstract
Repeated addition	How many wellies needed for 3 children?	Use pictures to count in 2's and 5's.	$2+2+2=$ \square $3+3+3=$ \square
Doubling	Use manipulatives to practically double.	Use pictures double 4's and 2's.	Writing doubles using a template.

EYFS Division.

Objective \& Strategy	Concrete	Pictorial	Abstract
Sharing	Sharing the fruit equally into bowls.	Use pictures to count in 2's and 5's.	Sharing 6 into 3 .

Y1 Multiplication

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling.	Draw pictures to show how to double numbers. What is double 3 ?	Double 4 is 8 . Double 5 = 10
Counting in multiples	Count the groups as children skip counting, children may use their fingers as they are skip counting. \square	Children make representations to show counting in multiples.	Count in multiples of numbers aloud. Write sequences with multiples of numbers. $\begin{aligned} & \text { 2,4,6,8,10... } \\ & 5,10,15,20,25,30 \ldots . . \end{aligned}$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw and make representations.	$\begin{aligned} & 2 \times 4=8 \\ & 3 \times 5=15 \end{aligned}$
Repeated addition	Using different objects to add equal groups.	Use pictorial including numberlines to solve problems.	$2+2+2+2=8$

Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots of 53 lots of 2 etc.	Draw representations of arrays to show understanding.	$\begin{aligned} & \begin{array}{l} 3 \times 2=6 \\ 2 \times 5=10 \end{array} \\ & 5 \times 3=15 \\ & 2 \times 5=10 \end{aligned}$

Y2 Multiplication

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,4,5,10$ from o (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. Use the bar model to calculate how many wheels there are altogether: \qquad \times \qquad $=$ \qquad	Count in multiples of a number aloud. Write sequences with multiples of numbers.

Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ $\begin{aligned} & 4+4+4=12 \\ & 3+3+3+3= \end{aligned}$ 12 $\begin{aligned} & 4 \times 3=12 \\ & 3 \times 4=12 \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.	Use concrete apparatus to show number families.		$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Y1 Division

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes; can you share them equally in 2 groups?	Children use pictures or shapes to share quantities	

Year 2 Division

Division as sharing	I have 10 cubes. can you share them equally in 2 groups?	Children use pictures or shapes to share quantities 15 shared between 3 is 5 .	12 shared between 3 is 4
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

		Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	

Year 3 Multiplication and division

Objective \& Strategy	Concrete	Pictorial	Abstract
Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables.		How many altogether? What would the calculation be? How many different calculations can you think of? e.g. $3 \times 4=, 4 \times 3=, 12=3 \times 4$ etc	$\begin{aligned} & 3 \times 4= \\ & 4 \times 3= \\ & 12=3 \times 4 \\ & 12=4 \times 3 \\ & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$ Mary has 3 friends. She has 12 sweets in total. If she shares them equally how many sweets will each child have?
Calculate mathematical statements for multiplication and division within the multiplication t ables and write them using the multiplication (x), division (\div) and equals (=) signs.	$2 \times 8=$	What could the calculation be?	2 multiplied by 8 is equal to? How many eyes do 8 people have altogether? $\begin{aligned} & 2 \times \neq 16 \\ & 16 \div _=2 \end{aligned}$
Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in context.	$4+4+4+4+4+4$	What would the addition calculation look like? Can you write this as a multiplication problem? How many different ways can you represent this?	$\begin{aligned} & 4+4+4+4= \\ & 4 \times 4= \\ & 4 \text { squared = } \end{aligned}$ A bar of chocolate is in the shape of a square? If there are 4 columns how many pieces of chocolate are there altogether? What would the next square bar look like? E.g. 5×5 =

Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.			True or false? Anything multiplied by 6 will equal an even number?

[^1]| Objective and Strategy. | Concrete | Pictorial | | | | | | | | Abstract | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplying by 10 | Place value counters
 Write the calculation shown by the place value counters.
 Each row has \qquad tens and \qquad ones so each
 row has a value of \qquad
 There are \qquad rows.
 The calculation is \qquad x_= \qquad | Mat \square
 5
 10 | th
 5
 10 | | 1
 | s 5
 10 | the
 10
 5
 10 | m $\begin{aligned} & \hline 5 \\ & \hline 10 \end{aligned}$ | 10 | $37 \times 10=370^{`}$ | | | |
| Multiplying by 100 | Place value counters
 Money
 Use Diennes apparatus:
 If $3 \times \boldsymbol{n}=\boldsymbol{R}=3$ ones $=3$
 Complete: $\begin{aligned} & 3 \times \boldsymbol{\\|}=\boldsymbol{\\|}=\boldsymbol{l}=\text { tens }= \\ & 3 \times\\|=\\| \text { hundreds }= \end{aligned}$ | As above but by 100 | | | | | | | | Place left; 37×1 | rid;
 oo | $\begin{aligned} & \text { ligits } \\ & \hline 3 \\ & \hline 0 \end{aligned}$ | ove two columns to the |

	1 0 0 0 -0 1 0 0 0 0 0	$\begin{aligned} & 91 \div 13=7 \\ & 91 \div 7=13 \\ & 7=91 \div 13 \\ & 13=91 \div 7 \\ & 91 \div 7 \\ & (70+21) \div 7 \\ & 10+3=13 \end{aligned}$					
Dividing 3 digits by 1 digit	Place value counters	\square					Formal short division with three digits As above with 3 digits
		$\begin{aligned} & 252 \div 6=42 \\ & 252 \div 42=6 \\ & 42=252 \div 6 \\ & 6=252 \div 42 \end{aligned}$					

Y5 Multiplication

Y5 Division

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiply multi-digit number up to 4 digits by a 2 -digit number using the formal method of long multiplication. *Use of inverse operations as a tool for checking answers.	As in previous years, children will use concrete and pictorial methods in order to close the gap. Resources may include: Numicon Base 10/Deans Multi-link Counters		2 Laurn made cookies for a bake sale She made 345 cookies The recipes saled tha she should thooclate chios will there hea thooke How many chooclatechips wil there bealtogethe?
Short multiplication involving decimals			$\begin{array}{r} 3 \cdot 19 \\ \times 8 \cdot \\ \hline 25 \cdot 52 \end{array}$
Divide numbers up to 4 digits by a 2 digit number using the formal written method.			

[^0]: Estimate and use inverse to check calculations.

[^1]: Year 4 Multiplication and Division.

